Emotional processing in anterior cingulate and medial prefrontal cortex

Amit Etkin¹,², Tobias Egner³ and Raffael Kalisch⁴

¹Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
²Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC) at the Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
³Department of Psychology & Neuroscience and Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
⁴Institute for Systems Neuroscience and NeuroImage Nord, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany

Negative emotional stimuli activate a broad network of brain regions, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal–caudal cognitive and ventral–rostral affective subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear or anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal–caudal regions of the ACC and mPFC are involved in appraisal and expression of negative emotion, whereas ventral–rostral portions of the ACC and mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions.

Controversies about anterior cingulate and medial prefrontal functions

Although the medial walls of the frontal lobes, comprising the anterior cingulate cortex (ACC) and the medial prefrontal cortex (mPFC), have long been thought to play a critical role in emotional processing [1], it remains uncertain what exactly their functional contributions might be. Some investigators have described evaluative (appraisal) functions of the ACC and mPFC, such as representation of the value of stimuli or actions [2–4] and the monitoring of somatic states [5]. Others hold that the ACC is primarily a generator of physiological or behavioral responses [6,7]. Still others have described a regulatory role for these regions, such as in the top-down modulation of limbic and endocrine systems for the purpose of emotion regulation [3,8–11]. An additional source of uncertainty lies in the way in which any one of these proposed functions might map onto distinct subregions of the ACC or mPFC (Box 1).

Undoubtedly the most influential functional parcellation of this type has been the proposal that there exists a principal dichotomy between caudal–dorsal midline regions that serve a variety of cognitive functions and rostral–ventral midline regions that are involved in some form of emotional processing [12]. However, even this broadly and long-held view of basic functional specialization in these regions has been shaken by considerable evidence over the past decade indicating that many types of emotional processes reliably recruit caudal–dorsal ACC and mPFC regions [13,14].

Here, we review recent human neuroimaging, animal electrophysiology, and human and animal lesion studies that have produced a wealth of data on the role of the ACC and mPFC in the processing of anxiety and fear. We chose to focus primarily on the negative emotions of anxiety and fear because they are by far the most experimentally tractable and most heavily studied, and they afford the closest link between animal and human data. We subsequently briefly examine whether a conceptual framework derived from fear and anxiety can be generalized to other emotions.

Given the complexity [15] and multidimensional nature [16] of emotional responses, we address the specific functions or processes that constitute an emotional reaction, regardless of whether they are classically seen as emotional (e.g. a withdrawal response or a feeling) or cognitive.

Glossary

Appraisal: evaluation of the meaning of an internal or external stimulus to the organism. Only stimuli that are appraised as motivationally significant will induce an emotional reaction, and the magnitude, duration and quality of the emotional reaction are a direct result of the appraisal process. Moreover, appraisal can be automatic and focus on basic affective stimulus dimensions such as novelty, valence or value, or expectation discrepancy, or may be slower and sometimes even require controlled conscious processing, which permits a more sophisticated context-dependent analysis.

Fear conditioning: learning paradigm in which a previously neutral stimulus, termed the conditioned stimulus (CS), is temporally paired with a non-learned aversive stimulus, termed the unconditioned stimulus (US). After pairing, the CS predicts the US and hence elicits a conditioned response (CR). For example, pairing of a tone with a foot shock results in elicitation of fear behavior during subsequent responses to a non-paired tone.

Extinction: learning process created by repeatedly presenting a CS without pairing with an US (i.e. teaching the animal that the CS no longer predicts the US) after fear conditioning has been established. This results in formation of an extinction memory, which inhibits expression of, but does not erase, the original fear memory.

Reappraisal: specific method for explicit emotion regulation whereby a conscious deliberate effort is engaged to alter the meaning (appraisal) of an emotional stimulus. For example, a picture of a woman crying can be reappraised from a negative meaning to a positive one by favoring an interpretation that she is crying tears of joy.

Regulation: general process by which conflicting appraisals and response tendencies are arbitrated between to allow selection of a course of action. Typically, regulation is thought to have an element of inhibition and/or enhancement for managing competing appraisals and response tendencies.

Corresponding author: Etkin, A. (amitektin@stanford.edu).
We also distinguish between processes involved in emotional stimulus appraisal and consequential response expression [17] and those involved in emotion regulation. Regulation occurs when stimuli induce conflicting appraisals and hence incompatible response tendencies or when goal-directed activity requires suppression of interference from a single, emotionally salient, task-irrelevant stimulus source. We found that an appraisal or expression versus regulation contrast provides a robust framework for understanding ACC and mPFC function in negative emotion.

Fear conditioning and extinction in humans

The paradigms used in the acquisition and extinction of learned fear are particularly valuable for isolating the neural substrates of fear processing because the anticipatory fear or anxiety triggered by the previously neutral conditioned stimulus (CS) can be dissociated from the reaction to the aversive unconditioned stimulus (US) per se. This is not possible in studies that, for example, use aversive images to evoke emotional responses. Furthermore, comparison between fear conditioning and fear extinction facilitates an initial coarse distinction between regions associated with either the appraisal of fear-relevant stimuli and generation of fear responses (fear conditioning), or the inhibitory regulation of these processes (extinction).

Several recent quantitative meta-analyses of human neuroimaging studies examined activations associated with fear CS presentation compared to a control CS never paired with the US [13,14,18]. In Figure 1a we present...
plots of the location of each activation peak reported in the ACC or mPFC in the relevant fear conditioning studies, collapsing across left and right hemispheres. It is readily apparent that activations in fear conditioning studies are not evenly distributed throughout the ACC and mPFC, but rather are clustered heavily within the dorsal ACC (dACC), dorsomedial PFC (dmPFC), supplementary motor area (SMA) and pre-SMA. These activations, however, might reflect a variety of different processes that occur simultaneously or in rapid temporal succession, for example CS appraisal and expression of conditioned responses (CRs). These processes are intermixed with, and supported by, learning processes, namely, acquisition, consolidation and storage of a fear memory (CS–US association), and retrieval of the fear memory on subsequent CS presentations.

The acquisition component of fear conditioning can, to some extent, be circumvented by instructing subjects about CS–US contingencies at the beginning of an experiment. Such instructed fear experiments nevertheless also consistently activate the dorsal ACC and mPFC (Figure 1b) [14,19]. Similarly, recalling and generating fear in the absence of reinforcement several days after conditioning activate dorsal midline areas, and are not confounded by fear learning [20]. Rostral parts of the dorsal ACC/mPFC are specifically involved in the (conscious) appraisal, but not direct expression, of fear responses, as shown by reduction of rostral dACC and dmPFC activity to threat by high working memory load in the context of unchanged physiological reactivity [2,14], and correlations of rostral dACC and dmPFC activity with explicit threat evaluations but not physiological threat reactions [21].

Response expression, conversely, seems to involve more caudal dorsal areas in SMA, pre-SMA and pdACC, and caudal parts of dmPFC and adACC, although some of the evidence for this contention is indirect and based on studies of the arousal component inherent to most fear and anxiety responses. For example, Figure 1c shows clusters that correlate with sympathetic nervous system activity, irrespective of whether the context was fear-related or not. Positive correlations are found throughout the mPFC, but are again primarily clustered in mid-to-caudal dorsal mPFC areas. Lesion [22] and electrical stimulation studies [23] confirmed this anatomical distribution.

Considering these data in conjunction with observations that dACC activity correlates with fear-conditioned skin conductance responses [24] and with increases in heart rate induced by a socially threatening situation [25], as well as findings that direct electrical stimulation of the dACC can elicit subjective states of fear [26], strongly suggests that the dorsal ACC and mPFC are involved in generating fear responses. Neuroimaging studies of autonomic nervous system activity also indirectly suggest that the same areas do not exclusively function in response expression, but might also support appraisal processes. For example, the dorsal ACC and mPFC are associated with interoceptive awareness of heart beats [27], and, importantly, recruitment of the dorsal ACC and mPFC during interoceptive perception is positively correlated with subjects’ trait anxiety levels [27]. Thus, the dorsal ACC and mPFC seem to function generally in the appraisal and expression of fear or anxiety. These studies leave uncertain the role that the dorsal ACC and mPFC might play in the acquisition of conditioned fear,
A rich literature has examined the role of the rodent medial frontal cortex in the acquisition and extinction of conditioned fear, as well as the expression of conditioned and unconditioned fear [74]. These studies facilitate a greater degree of causal inference than imaging studies. Much like the human dorsal ACC and mPFC, the rodent mPFC is strongly activated during fear conditioning [75,76]. Lesion or acute inactivation studies have revealed a role for the ventrally located infralimbic (IL) and dorsally located prelimbic (PL) subregions in conditioned fear expression when recall tests are performed within a few days after initial conditioning [77–81]. Interestingly, the mPFC does not seem to be required during fear acquisition itself, as evidenced by intact initial fear learning after disruption of IL or PL prior to conditioning [82–85]. As with expression of fear memories, activity in the rodent mPFC is also required for expression of unconditioned fear [86,87].

In terms of extinction, the recall and expression of an extinction memory more than 24 h after learning requires activity in IL [80,82,84,88] and to some degree PL [85,89]. By contrast, within-session extinction of CRs during repeated non-reinforced presentations of the CS does not require activity in IL or PL [80,82,84,88]. Thus, the role of the mPFC during extinction closely follows its role during fear conditioning: it is required for recall or expression, but not for initial acquisition.

Electrical microstimulation of the rodent mPFC generally does not directly elicit fear behavior or produce overt anxiolysis, but rather exerts a modulatory function, gating behavioral output elicited by external fear-eliciting stimuli or by direct subcortical stimulation [90–93]. Curiously, given the role of the mPFC in fear expression, it has been found that these effects are generally, but not exclusively, fear-inhibitory and occur with stimulation in all mPFC subregions [99–100]. Of note, however, one recent study found a fear-enhancing effect of PL stimulation, but a fear-inhibiting effect of IL stimulation [92]. Together, these findings suggest that a model of mPFC function in fear or extinction must account for interactions of the mPFC with other elements of the fear circuit, because the mPFC itself functions primarily by modifying activity in other brain areas.

With respect to one important interacting partner, the amygdala, it has been reported that stimulation in the IL or PL inhibits the activity of output neurons in the central amygdalar nucleus (CEA) [94], as well as the basolateral amygdalar complex (BLA) [95]. IL and PL stimulation can also directly activate BLA neurons [96]. Thus, the mPFC can promote fear expression through BLA activation and can inhibit amygdala output through CEA inhibition. CEA inhibition, however, is achieved through the action of excitatory glutamatergic mPFC projections onto inhibitory interneurons in the amygdala, probably through the intercalated cell masses [97,98]. Innervation of the intercalated cell masses originates predominantly from IL rather than PL [99,100], which supports a preferential role for IL in inhibitory regulation of the amygdala.

Box 2. Studies of fear conditioning and extinction in rodents

A rich literature has examined the role of the rodent medial frontal cortex in the acquisition and extinction of conditioned fear, as well as the expression of conditioned and unconditioned fear [74]. These studies facilitate a greater degree of causal inference than imaging studies. Much like the human dorsal ACC and mPFC, the rodent mPFC is strongly activated during fear conditioning [75,76]. Lesion or acute inactivation studies have revealed a role for the ventrally located infralimbic (IL) and dorsally located prelimbic (PL) subregions in conditioned fear expression when recall tests are performed within a few days after initial conditioning [77–81]. Interestingly, the mPFC does not seem to be required during fear acquisition itself, as evidenced by intact initial fear learning after disruption of IL or PL prior to conditioning [82–85]. As with expression of fear memories, activity in the rodent mPFC is also required for expression of unconditioned fear [86,87].

In terms of extinction, the recall and expression of an extinction memory more than 24 h after learning requires activity in IL [80,82,84,88] and to some degree PL [85,89]. By contrast, within-session extinction of CRs during repeated non-reinforced presentations of the CS does not require activity in IL or PL [80,82,84,88]. Thus, the role of the mPFC during extinction closely follows its role during fear conditioning: it is required for recall or expression, but not for initial acquisition.

Electrical microstimulation of the rodent mPFC generally does not directly elicit fear behavior or produce overt anxiolysis, but rather exerts a modulatory function, gating behavioral output elicited by external fear-eliciting stimuli or by direct subcortical stimulation [90–93]. Curiously, given the role of the mPFC in fear expression, it has been found that these effects are generally, but not exclusively, fear-inhibitory and occur with stimulation in all mPFC subregions [99–100]. Of note, however, one recent study found a fear-enhancing effect of PL stimulation, but a fear-inhibiting effect of IL stimulation [92]. Together, these findings suggest that a model of mPFC function in fear or extinction must account for interactions of the mPFC with other elements of the fear circuit, because the mPFC itself functions primarily by modifying activity in other brain areas.

With respect to one important interacting partner, the amygdala, it has been reported that stimulation in the IL or PL inhibits the activity of output neurons in the central amygdalar nucleus (CEA) [94], as well as the basolateral amygdalar complex (BLA) [95]. IL and PL stimulation can also directly activate BLA neurons [96]. Thus, the mPFC can promote fear expression through BLA activation and can inhibit amygdala output through CEA inhibition. CEA inhibition, however, is achieved through the action of excitatory glutamatergic mPFC projections onto inhibitory interneurons in the amygdala, probably through the intercalated cell masses [97,98]. Innervation of the intercalated cell masses originates predominantly from IL rather than PL [99,100], which supports a preferential role for IL in inhibitory regulation of the amygdala.
attempting to ignore emotionally congruent or incongruent word labels (Happy, Fear) superimposed over the faces. Emotional conflict, created by a word label incongruent with the facial expression, substantially slowed reaction times [8,36]. Moreover, when incongruent trials were preceded by an incongruent trial, reaction times were faster than if incongruent trials were preceded by a congruent trial [8,36], an effect that has previously been observed in traditional, non-emotional conflict tasks, such as the Stroop and flanker protocols [37]. According to the conflict-monitoring model [38], this data pattern stems from a conflict-driven regulatory mechanism, whereby conflict from an incongruent trial triggers an upregulation of top-down control, reflected in reduced conflict in the subsequent trial. This model can distinguish brain regions involved in conflict evaluation and those involved in conflict regulation [38,39]. In studies of emotional conflict, regions that activated more to post-congruent incongruent trials than post-incongruent incongruent trials, interpreted as being involved in conflict evaluation, included the amygdala, dACC, dmPFC and dorsolateral PFC [8,36]. The role of dorsal ACC and mPFC areas in detecting emotional conflict is further echoed by other studies of various forms of emotional conflict or interference, the findings of which we plot in Figure 2a.

Figure 2. (a) Emotional conflict across a variety of experimental paradigms is associated with activation in the dorsal ACC and mPFC. (b) Decreasing negative emotion through reappraisal is associated with preferential activation of the dorsal ACC and mPFC. Targets of amygdalar connectivity during tasks involving appraisal or expression (c) or regulation (d) of negative emotion. Positive connectivity is observed primarily during appraisal or expression tasks, and most heavily in the dorsal ACC and mPFC. By contrast, negative connectivity is observed primarily in the ventral ACC and mPFC across both appraisal or expression and regulation tasks. These connectivity findings are therefore consistent with the dorsoventral functional-anatomical parcellation of the ACC and mPFC derived from activation analyses.

By contrast, regions more active in post-incongruent incongruent trials are interpreted as being involved in conflict regulation, and prominently include the pgACC [8,36]. Regulation-related activation in the pgACC was accompanied by a simultaneous and correlated reduction in conflict-related amygdalar activity and does not seem to involve biasing of early sensory processing streams [39], but rather the regulation of affective processing itself [36]. These data echo the dorsal–ventral dissociation discussed above with respect to fear expression and extinction in the ACC and mPFC.

The circuitry we find to be specific for regulation of emotional conflict (ventral ACC and mPFC and amygdala) is very similar to that involved in extinction. Although these two processes are unlikely to be isomorphic, and each can be understood without reference to the other, we consider the striking similarity between extinction and emotional conflict regulation to be potentially important. Much like the relationship between improved emotional conflict regulation and decreased conflict evaluation-related activation in the dorsal ACC and mPFC, more successful extinction is associated with decreased CS-driven activation in the dorsal ACC and mPFC of humans and rodents [40,41]. Thus, the most parsimonious explanation for these data is that emotional conflict evaluation-related functions involve overlapping neural mechanisms with appraisal and expression of fear, and that regulation of emotional conflict also involves circuitry that overlaps with fear extinction. These conceptual and functional–anatomical similarities between evaluation and regulation of emotional conflict and fear also support the generalizability of our account of ACC and mPFC functional subdivisions beyond simply fear-related processing, but more generally to negative emotional processing. Of note, although the intensity of the negative emotions elicited during fear conditioning and evoked by emotional conflict differ significantly, they nonetheless engage a similar neural circuitry, probably because both fear and emotional conflict reflect biologically salient events.

By contrast, regions more active in post-incongruent incongruent trials are interpreted as being involved in conflict regulation, and prominently include the pgACC [8,36]. Regulation-related activation in the pgACC was accompanied by a simultaneous and correlated reduction in conflict-related amygdalar activity and does not seem to involve biasing of early sensory processing streams [39],
Top-down control of emotion
During emotional conflict regulation, emotional processing is spontaneously modulated in the absence of an explicit instruction to regulate emotion. Emotional processing can also be modulated through deliberate and conscious application of top-down executive control over processing of an emotional stimulus. The best-studied strategy for the latter type of regulation is reappraisal, a cognitive technique whereby appraisal of a stimulus is modified to change its ability to elicit an emotional reaction [42]. Reappraisal involves both the initial emotional appraisal process and the reappraisal process proper, whereby an additional positive appraisal is created that competes with the initial negative emotional appraisal. Thus, we would expect reappraisal to involve the dorsal ACC and mPFC regions that we observed to be important for emotional conflict detection (Figure 2a). Consistent with this prediction, a meta-analysis found that reappraisal was reliably associated with activation in the dorsal ACC and mPFC (Figure 2b) [43].

This reappraisal meta-analysis, interestingly, did not implicate a consistent role for the ventral ACC and mPFC [43], which suggests that reappraisal does not primarily work by suppressing the processing of an undesired emotional stimulus. Nevertheless, activity in the ventral ACC and mPFC in some instances is negatively correlated with activity in the amygdala in paradigms in which reappraisal resulted in downregulation of amygdalar activity in response to negative pictures [44,45]. Thus, the ventral ACC and mPFC might be mediators between activation in dorsal medial and lateral prefrontal areas, involved in reappraisal [43], and the amygdala, with which lateral prefrontal structures in particular have little or no direct connectivity [46]. Consistent with this idea, the ventral ACC and mPFC are also engaged when subjects perform affect labeling of emotional faces [47] or when they self-distract from a fear-conditioned stimulus [48], two other emotion regulation strategies that result in downregulation of amygdalar activity.

These data suggest that controlled top-down regulation, like emotional conflict regulation, uses ventral ACC and mPFC areas to inhibit negative emotional processing in the amygdala, thus dampening task interference. The ventral ACC and mPFC might thus perform a generic negative emotion inhibitory function that can be recruited by other regions (e.g. dorsal ACC and mPFC and lateral PFC) when there is a need to suppress limbic reactivity [10]. This would be a prime example of parsimonious use of a basic emotional circuitry, conserved between rodents and humans (Box 2), for the purpose of higher-level cognitive functions possible only in humans.

Amygdala–ACC and –mPFC functional connectivity
Our analysis of the neuroimaging data has emphasized task-based activation studies. Complementary evidence can be found in analyses of functional connectivity, because ACC and mPFC subregions can be distinguished through their differential anatomical connectivity (Box 1). In some ways, psychological context-specific temporal covariation (i.e. task-dependent connectivity) between regions might provide an even stronger test of the nature of inter-regional relationships than consistency with regions that simply coactivate in a task. Figure 2c,d shows the ACC and mPFC connectivity peaks for all such connectivity studies, irrespective of the specific paradigm or instructions used (primarily general negative stimuli), as long as the task facilitated discrimination between appraisal or expression (Figure 2c) and regulation (Figure 2d). The spatial distribution of peaks during appraisal/expression tasks shows a relative preponderance of positive connectivity peaks in the dorsal ACC and mPFC and of negative connectivity peaks in the ventral ACC and mPFC. In addition, during regulation tasks, connectivity was restricted to the ventral ACC and mPFC and was primarily negative (Figure 2d). These data thus lend further support to our proposal of a dorso–ventral separation in terms of negative emotion generation (appraisal and expression) and inhibition (regulation).

Integration with other perspectives on ACC and mPFC function and other emotions
Although less developed than the literature on fear and anxiety, studies on other emotions are broadly consistent with our formulation of ACC and mPFC function. On the negative emotion appraisal and expression side, direct experience of pain, or empathy for others experiencing pain, activates the dorsal ACC and mPFC [49], and lesions of the dACC also serve as treatment for chronic pain [50]. Similarly, increased sensitivity to a range of negative emotions is associated with greater engagement of the dorsal ACC and mPFC, including disgust [51] and rejection [52], and transcranial-magnetic-stimulation-induced disruption of the dmPFC interferes with anger processing [53]. Uncertainty or ambiguity, which can induce anxiety and relates to emotional conflict, leads to activation in the dACC and dmPFC [54]. On the regulation side, endogenously driven analgesia by means of the placebo effect has been closely tied to the pgACC, which is thought to engage in top-down modulation of regions that generate opioid-mediated anti-nociceptive responses, such as the amygdala and PAG [55,56]. It remains unclear how sadness is evaluated and regulated, and what role the sgACC plays in these processes, because it is a common activation site in response to sad stimuli [57].

Positive emotion, which can serve to regulate and diminish negative emotion, has been associated in a meta-analysis with activation in the sgACC, vmPFC and pgACC [58]. Extinction of appetitive learning activates the vmPFC [59], much as extinction of learned fear does. The evaluation of positive stimuli and reward is more complicated. For instance, Rushworth and co-workers proposed that the processes carried out by the adACC are mirrored by similar contributions to reinforcement-guided decision-making from the orbitofrontal cortex, with the distinction that the adACC is concerned with computing reinforcement value of actions whereas the orbitofrontal cortex is concerned with gauging the reinforcement values of stimuli [60].

Taken together, these data broadly support our dorsal–ventral distinction along appraisal–expression versus regulation lines, with respect specifically to negative emotion. Conversely, it is not obvious how to accommodate our
analysis with the suggestion that the vmPFC specifically assesses stimulus values [10], but not action values, with the opposite being the case for the dACC [60]. Thus, this should be seen as an early attempt to integrate these and other models of ACC and mPFC function and can serve to stimulate further research in this area.

It is also worth examining why the conceptualization proposed in this review differs significantly from the earlier view of a cognitive–affective division [12]. Although the meta-analysis reported in the earlier paper did not indicate which specific studies were included, it seems that much of the support for this scheme comes from studies of patients with affective disorders, in whom ventral ACC and mPFC dysfunction can be more readily observed in the context of deficits in regulation [40,61]. Moreover, the dorsal–ventral dissociation between dACC activation in a counting Stroop and pgACC in an emotional counting Stroop [12] has not held up to subsequent evidence (Figure 2a) or direct contrasts between emotional and non-emotional conflict processing [36], nor does the emotional counting Stroop involve a true Stroop conflict effect in the way that the counting Stroop does [62].

Concluding remarks

This review has highlighted several important themes. First, the empirical data do not support the long-held popular view that dorsal ACC and mPFC regions are involved in cognitive but not emotional functions, whereas ventral regions do the reverse [12]. Rather, the key functional distinction between these regions relates to evaluative function on the one hand, and regulatory function on the other hand for the dorsal and ventral ACC and mPFC, respectively (Figure 3). This new framework can also be broadly generalized to other negative and positive emotions, and points to multiple exciting lines of future research (Box 3).

Disclosure statement

Amit Etkin receives consulting fees from NeoStim. The other authors report no financial conflicts.

Acknowledgements

We would like to thank Gregory Quirk, Kevin LaBar, James Gross and Carsten Wotjak for their helpful comments and criticisms of this manuscript. This work was supported by NIH grants P30MH089888 and R01MH091860, and the Sierra-Pacific Mental Illness Research Education and Clinical Center at the Palo Alto VA Health Care System.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tics.2010.11.004.

References

Review

27 Critchley, H.D.
25 Wager, T.D.

Review

Trends in Cognitive Sciences February 2011, Vol. 15, No. 2

66 Ghasghaei, H.T. et al. (2007) Sequence of information processing for emotions based on the anatomical dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923
75 Burgess-Robles, A. et al. (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 29, 8474–8482
81 Laviolette, S.R. et al. (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J. Neurosci. 25, 6066–6075
99 McDonald, A.J. et al. (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaeodrus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–75