
Emotions shape how we think, feel and 
behave, and they may be regulated in various 
ways1. When emotion regulation is absent, 
deficient or poorly matched to situational 
demands, emotional responses may be exces-
sive, inappropriate or insufficient, as is seen in 
the context of various psychiatric disorders2. 
Unfortunately, despite the importance of 
such regulation, we lack a mechanistic frame-
work for its analysis and for offering testable 
hypotheses regarding its underlying com-
putations and neurobiological processes. In 
this Opinion article, we provide a framework 
for understanding emotion regulation that 
emerges from neuroimaging studies involving 
various emotion-regulation paradigms and 
conceptual and computational advances in 
other domains of self-regulation. Our hope 
is that this new framework will encourage 
the development of novel computational 
and experimental approaches to investigate 
emotion regulation.

Emotion and emotion regulation
Emotions consist of sets of cognitive, subjec-
tive, physiological and motor changes that 
arise from an individual’s conscious or non-
conscious determination that a stimulus has 
a positive or negative value in a particular 
context and with respect to that individual’s 
currently active goals3. Stimuli that drive 
this ‘good versus bad’ determination may be 
internal or external to the individual, and 
they may have an innate or acquired value. 
Hence, the process of valuation is at the core 
of emotion. Emotions unfold over time, and 
the cognitive, subjective, physiological and 
motor components of emotion may further-
more be discordant with each other with 
respect to timing, magnitude and duration4,5. 
Importantly, emotions alter the state of the 

individual and/or the environment (that is, 
through the actions of the individual), often 
leading to the achievement of a more ‘good 
for me’ or less ‘bad for me’ state (that is, an 
‘action’ output). For example, fear might 
motivate avoidance of a dangerous situation 
for the individual, and happiness may lead 
to an individual repeating an action. Seen 
in this way, an emotion can be described 
as a perception–valuation–action (PVA) 
sequence6–8 (the emotional-reactivity PVA 
sequence), in which input from the external 
or internal world is perceived, valued and 
then triggers an action that alters the external 
or internal world (FIG. 1).

At the neural level, emotions engage highly 
evolutionarily conserved subcortical systems, 
such as the amygdala, ventral striatum and 
periaqueductal grey (PAG), as well as a set of 
cortical regions (more elaborated in primates) 
that include the anterior insula and dorsal 
anterior cingulate9–21 (dACC; FIG. 2). Thus, 
multiple anatomical locations are associated 

with emotion. The variety of information cod-
ing that occurs in these structures accounts in 
part for the multi-component features of emo-
tion (that is, the cognitive, subjective, physi-
ological and motor changes). Moreover, each 
structure processes information to varying 
levels of abstraction or incorporation of con-
textual information. For example, core limbic 
regions, such as the amygdala, ventral striatum 
and PAG, may extract simple motivational 
features of a stimulus (for example, a snake 
being a potential threat); cortical regions, such 
as the insula, may provide additional intero-
ceptive information; the hippocampus may 
provide temporal and spatial context related 
to memory; and the dACC may relate the 
stimulus to other motivational demands on 
the individual8.

Emotion regulation refers broadly to 
implementation of a conscious or non-
conscious goal to start, stop or otherwise 
modulate the trajectory of an emotion7. 
Although emotion regulation is conceptually 
distinct from the unfolding of the emotion 
itself, it nonetheless also involves a PVA 
sequence, such as that described above for 
an emotion7. Emotion regulation is triggered 
when the emotional reaction itself (that is, 
the action output of an emotional-reactivity 
PVA sequence) becomes the target of valua-
tion (FIG. 1) or when there is conflict between 
different emotional-reactivity PVAs in deter-
mining behaviour. As in emotions, ‘good 
for me–bad for me’ valuations of emotional 
reactions may be innate or learned through 
experience, and they may be driven by con-
textual factors or the individual’s goals. The 
action output of the emotion-regulation 
PVA sequence is the process of emotion 
regulation itself, which may be carried out 
consciously or non-consciously and may 
potentially target any component of the 
emotional-reactivity PVA sequence (FIG. 1).
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Glossary

Computational modelling
The application of algorithms representing functions 
computed by the brain to explain observed behaviour 
through latent variables.

Conditioned stimulus
(CS). A previously neutral stimulus that takes on aversive 
or rewarding properties after being associated with an 
unconditioned stimulus.

Limbic regions
Deep brain structures (for example, the amygdala, ventral 
striatum and brain stem nuclei) involved in emotional and 
motivational processes.

Prediction errors
Discrepancies between experienced stimuli and 
expectations about them.

Reinforcement learning
An area of study describing changes in behaviour driven 
by the experience of rewards or punishments.

Transcranial magnetic stimulation
(TMS). A method for non-invasive stimulation of the brain 
using a focal pulsed magnetic field, which can be used to 
excite or inhibit brain activity.

Unconditioned stimulus
(US). A naturally aversive or rewarding stimulus.

Value
A dimensionless ‘universal currency’ that denotes the 
relative ‘good for me’ or ‘bad for me’ motivational 
relevance of a stimulus or action.
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Based on behavioural and neuroimag-
ing findings, two broad types of emotion 
regulation have been distinguished: ‘explicit’ 
and ‘implicit’ regulation22. Explicit regula-
tion of emotion requires conscious effort for 
initiation and demands some level of active 
monitoring of emotion during implementa-
tion, and thus is associated with some level of 
insight and awareness. The most-commonly 
studied explicit regulation strategy is reap-
praisal, which entails explicit alteration of the 
self-relevant meaning (an appraisal) of an 
emotion-inducing stimulus. Meta-analyses 
of neuroimaging studies have found that 
reappraisal is associated with activation of 
various brain regions, namely the frontopa-
rietal executive network — including the 
dorsolateral prefrontal cortex (dlPFC), the 
ventrolateral PFC (vlPFC) and the parietal 
cortex — as well as the insula, supplemental 
motor area (SMA) and pre-SMA23,24 (FIG. 2).

Implicit regulation is characterized by the 
absence of an explicit instruction, is evoked 
automatically by the stimulus itself, runs to 
completion without conscious monitoring, 
and can happen without insight and aware-
ness22. Examples of this type of regulation 
are inhibition of fear and regulation of emo-
tional conflict25–36. In these paradigms, neu-
ral activation is consistently observed in the 
ventral ACC (vACC) and the ventromedial 
PFC (vmPFC)25–36 (FIG. 2).

We currently lack a unified computational 
and mechanistic framework within which we 
can understand these two types of emotion 
regulation. We propose that such a framework 

can be derived by considering another 
domain of self-regulation that deals with 
predictions, valuation and prediction errors, 
and for which a large amount of experimen-
tally well-developed computational literature 
exists: reinforcement learning, a component of 
value-based decision-making37–41.

The reinforcement learning view
The field of reinforcement learning has 
developed and validated computational 
models of choice behaviour. Individuals con-
tinually make choices based on predictions 
about the ‘good for me–bad for me’ value of 
stimuli or actions. Value predictions that are 
discrepant with the rewards or punishments 
that are experienced after a choice yield pre-
diction errors, which are used to update the 
values of potential choices and thereby drive 
future behaviour.

Here, we consider emotion regulation as a 
set of decisions about actions that are aimed 
at achieving a desired emotional state, which 
is specified within the multi-componential 
space of emotion. This state is therefore the 
predicted outcome of the emotion-regula-
tory actions. Thus, an emotion-regulatory 
action with a particularly ‘good for me’ pre-
dicted outcome will have a high value when 
deciding whether to engage in emotion 
regulation and which strategy to use to do 
so. Although we refer to a decision-making 
process, the computations that determine 
and execute emotion-regulatory actions may 
occur consciously or non-consciously (and 
thus may be conserved to differing degrees 
between humans and other animals). A dis-
crepancy between the predicted emotional 
state and the actual emotion can therefore 
be considered a prediction error, indicating 
that the regulatory action has not attained 
its expected outcome. When the emotion 
has fallen short of the target emotional state, 
there is a negative prediction error (that is, 
an expected event in the intended direc-
tion failed to occur). When the emotion has 
exceeded the target emotional state, there 
is a positive prediction error. These emo-
tion regulation-prediction errors update the 
decisional value of the emotion-regulatory 
action, supporting the ability to continue 
making decisions about whether to engage 
in emotion regulation and which strategy to 
use (or switch to).

Emotion-regulatory actions also have 
costs that are associated with their execu-
tion. This means that the decisional value 
of a regulatory action reflects both the pre-
dicted outcome and the cost of execution. 
There are probably situations in which a 
decision is made to not regulate because the 

benefits of such regulation are small or the 
costs are large. Although empirical research 
has primarily focused on downregulation of 
negative emotion, the same conceptual and 
computational structure can equally apply to 
up- or downregulation of negative or positive 
emotions.

Computational accounts of reinforce-
ment learning distinguish between two types 
of decisional control — model-free control 
and model-based control — which can both 
update predicted stimulus or action values 
and drive choice behaviour. Model-free 
control is characterized by its responsiveness 
to environmental events within a limited 
set of potential stimuli and responses. In 
such control, behaviour is guided solely 
based on experienced prediction errors 
(that is, assuming no a priori knowledge) 
and is therefore computationally efficient 
but not very flexible. Model-based control 
is characterized by application of rule-based 
decision-making and dynamic computa-
tion of optimal actions (based on an inter-
nal model that represents the individual’s 
a priori knowledge of the context) but is less 
computationally efficient. Although learning 
often shapes the internal model, application 
of model-based control does not require new 
experiences to occur for a model to be built. 
It is particularly useful when a priori knowl-
edge can create a shortcut to a decision or 
when adaptive decisions simply cannot be 
made in a timely manner through model-
free control alone. Models may be built in 
a ‘supervised’ manner by instruction or 
through observing the actions of others.

Across many decision-making paradigms 
and stimulus modalities, the choice with 
greater positive value is associated with 
greater vACC–vmPFC activation39,40,42–44. 
Association of reward with a chosen 
stimulus or action will result, in a model-
free manner, in a further increase in the 
decisional value of that stimulus or action, 
leading to that stimulus or action being 
more readily chosen next time — a process 
encoded in vACC–vmPFC activity40. During 
model-based control, when decision-making 
has to consider both external stimuli and 
internal a priori models, activation of the 
vACC–vmPFC is insufficient to guide choice 
by itself 37,45. In this case, cognitive control 
systems (such as the frontoparietal executive 
network)46 and the core cognitive capaci-
ties they mediate (for example, working 
memory) are needed for making use of an 
internal model47,48. For example, cognitively 
taxing individuals by having them perform a 
second task concurrently with reinforcement 
learning leads to greater use of model-free 

Figure 1 | A valuation perspective on emotional 
reactivity and regulation. Emotional reactivity 
is a perception–valuation–action (PVA) sequence 
(red boxes). The valuation reflects a ‘good for 
me–bad for me’ judgment about a stimulus, 
which triggers a multi-componential set of 
actions (for example, physiological, cognitive, 
motoric and subjective actions). Emotion regu-
lation also involves a PVA sequence that is 
driven by valuation of the emotion itself, with 
its action being regulation of the emotional 
response (blue boxes). Such regulation may 
affect any component of the emotional-reactivity 
PVA sequence.
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over model-based control47. Likewise, appli-
cation of inhibitory repetitive transcranial 
magnetic stimulation (rTMS) to the dlPFC 
biases individuals towards model-free from 
model-based control46, as does experimen-
tally induced stress (which also impairs 
working memory)48. Interestingly, in both 
the stress and the rTMS studies, individuals 
with greater working memory capacity expe-
rienced less disruption of model-based con-
trol. The lateral PFC may also itself encode 
value signals49,50.

We discuss in more detail below several 
emotion-regulatory paradigms and examine 
how they may map onto concepts of model-
free and model-based control.

Model-free emotion regulation
We propose that, in model-free emotion 
regulation, activity in the vACC–vmPFC 
reflects experience-dependent alteration in 
the value of emotion-regulatory behaviour 
(FIG. 3a). Thus, model-free emotion regu-
lation would be able to proceed entirely 
based on prediction error feedback. Various 

forms of fear inhibition and regulation of 
emotional conflict exemplify this type of 
regulation, wherein an increase in vACC–
vmPFC activity drives the individual into 
a more ‘good for me’ state (a lower level of 
fear or less reaction-time slowing) entirely 
in response to environmental contingencies. 
Although prior ideas about implicit emotion 
regulation align heavily with the concept 
of model-free emotion regulation, the key 
operational principle is to best capture the 
mechanisms of control (that is, model-free) 
rather than whether those mechanisms 
require conscious awareness (which may 
itself shift across time).

In a typical fear-inhibition experiment in 
humans, an individual first learns to associ-
ate a previously neutral conditioned stimulus 
(CS) with an aversive unconditioned stimulus 
(US). Conditioned responses to the CS 
can be extinguished if the CS is repeatedly 
presented without the US. From a valuation 
perspective on emotion regulation, mount-
ing a fear response when it is unnecessary 
given the changed conditioning context is 

costly and undesirable to the individual. This 
cost–benefit analysis thus favours regulating 
the fear response over not regulating it, and 
the cost–benefit can be tracked and adjusted 
simply based on experienced CS-driven 
emotional prediction errors.

At the neural level, a fear-conditioned 
CS activates regions such as the amygdala, 
insula and dACC, as well as brainstem 
regions like the PAG10,14–18,51,52. By contrast, 
fear extinction engages the vACC–vmPFC51. 
These results are consistent with findings 
from lesion and inactivation studies in ani-
mals, which demonstrate that fear inhibition 
as a consequence of extinction is an active 
process and not a decay of the original fear 
memory25–27. Similarly, acute reversal in 
humans of the CS–US contingency that 
was established during conditioning (that 
is, when a previously non-reinforced CS 
now predicts the US and the previously 
reinforced CS does not) is associated with 
vACC–vmPFC activation28. This activation 
is greater in magnitude than the activation 
associated with acquisition of the non-
reinforced CS, suggesting that the vACC–
vmPFC signal during reversal reflects an 
active ‘safety signal’ or positive value that 
is related to omission of the US rather than 
lack of a fear response per se.

During tests of fear generalization in 
which one CS is paired to a US and a sec-
ond CS is unpaired (and thus becomes a 
safety-signalling stimulus), stimuli that are 
the most similar to the unpaired CS are 
associated with greatest activation in the 
vACC–vmPFC29,30. By contrast, activation in 
the dACC and insula is greatest for stimuli 
that are the most similar to the paired CS29,30. 
Occasions in which an individual overcomes 
an acute threat (for example, they decide to 
approach a threat, such as allowing a snake 
to be advanced towards them in the MRI 
scanner) are associated with vACC–vmPFC 
activation and with reduced activation in 
the insula and dACC31. Likewise, expo-
sure to a distant threat is associated with 
greater vACC–vmPFC activation than is 
exposure to an imminent threat32. In all 
of these cases, vACC–vmPFC activation 
is seen when fear is inhibited, putting the 
individual in a more ‘good for me’ state. 
Concomitantly, decreased activation is seen 
in emotional-reactivity regions, such as the 
amygdala, insula, dACC and PAG.

A second example of model-free emo-
tion regulation comes from the emotional 
conflict task33,34 — a version of the classic 
Stroop paradigm that involves assessment 
of emotions53. Participants are presented 
with photographs of fearful or happy faces 

Figure 2 | Regions implicated in emotion regulation. The dorsal anterior cingulate (dACC), insula, 
amygdala and periaqueductal grey (PAG) (shown in red) have been implicated in emotional reactivity. 
By contrast, the dorsolateral prefrontal cortex (dlPFC), ventrolateral PFC (vlPFC), supplementary 
motor area (SMA), pre-SMA and parietal cortex (shown in blue) have been implicated in ‘explicit’ 
emotion regulation, and the ventral ACC (vACC)–ventromedial PFC (vmPFC; also shown in blue) has 
been implicated in ‘implicit’ emotion regulation.
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with the word ‘fear’ or ‘happy’ written over 
them and are asked to indicate whether the 
facial expression is fearful or happy. The 
word either matches the facial expression 
(congruent trials) or does not match the 
facial expression (incongruent trials). The 
emotional conflict during incongruent tri-
als induces reliable reaction-time slowing, 
as well as activation in emotional-reactivity 
regions, such as the amygdala, dACC and 
insula33–35.

Less reaction-time slowing is seen in 
incongruent trials if they were preceded by 
another incongruent trial, when compared 
with incongruent trials that had been pre-
ceded by a congruent trial, thus indicat-
ing that regulation occurred. The slowing 
associated with prior incongruent trials 
(compared with prior congruent trials) is 
therefore valued as ‘bad for me,’ triggering 
regulation, which can proceed in a model-
free manner. Indeed, post-incongruent 
incongruent trials are associated with 
increased activity in the vACC–vmPFC and 
decreased activity in the amygdala, dACC 
and insula33–35. Furthermore, individuals 
with lesions in the vACC–vmPFC are unable 
to regulate emotional conflict54.

Model-based emotion regulation
We propose that, in model-based emo-
tion regulation, frontoparietal regions are 
recruited for implementation of an internal 
model to guide behaviour, and that these 
regions may also encode value (FIG. 3b). 
Consistent with this formulation, we argue 
below that model-based emotion regulation 

requires intact working memory capacity 
to construct and/or make use of internal 
models. Crucially, we conceptualize model-
based regulation as being particularly 
helpful in situations in which model-free 
regulation would not be selected, despite its 
lower implementation cost, because doing 
so would take too long to effectively regulate 
emotion or because prediction error-based 
adjustments alone could not achieve the 
desired regulation outcome.

Reappraisal exemplifies the model-
based category of emotion regulation. As 
such, although previous concepts about 
explicit emotion regulation align heavily 
with model-based control, here we shift the 
emphasis to computational mechanisms 
rather than to whether conscious awareness 
is required. When an individual uses reap-
praisal to decrease negative emotion, they 
seek to alter the meaning of the stimulus 
(that is, the emotional valuation phase)1,7. 
For example, the individual may search for 
alternative subdominant meanings (such 
as someone’s tears reflecting joy rather 
than sadness) until the stimulus no longer 
induces an emotional response1. Model-
based emotion regulation is characterized 
by its ability to flexibly change in response to 
contextual and environmental demands by 
using the internal model of the individual’s 
external environment and internal state 
(that is, an ‘internal simulation’). Such an 
internal model is explicitly invoked when 
teaching participants how to reappraise in a 
task55,56. In fact, an a priori internal model is 
referenced in all forms of explicit emotion 

regulation, even though the specific strate-
gies may differ (for example, distancing or 
distraction). Arguably, it would be difficult 
to effectively regulate emotion in complex, 
often socially relevant, contexts without an 
internal model.

Meta-analyses show that, when reap-
praisal is used to decrease negative emo-
tion, activation is seen in the dlPFC, vlPFC, 
dACC–dorsomedial PFC (dmPFC), 
pre-SMA, SMA, insula and parietal cortex, 
and decreased activation is seen in the amyg-
dala23,24 (FIG. 2). One study found that the 
relationship between reappraisal success and 
vlPFC engagement was separately mediated 
by ventral striatal and amygdalar activity57. 
Another study found that better emotion-
regulatory success, as determined by an elec-
tromyography measure, was associated with 
greater amygdala inhibition and stronger 
negative connectivity between the amyg-
dala and the dlPFC and dACC–dmPFC58. 
Interestingly, greater amygdala inhibition 
during emotion regulation was also associated 
with a better ability to decrease pain through 
a similar reappraisal strategy59. Indeed, up- or 
downregulation of pain through a related 
strategy was associated with activation in the 
inferior frontal junction and SMA as well60. 
Although this finding with respect to over-
lapping neural substrates supports a poten-
tial similarity between regulation of pain as 
one type of stimulus and negative emotions 
more broadly, specific work comparing 
regulation of negative emotions induced 
with typical visual stimuli and regulation of 
pain is needed to determine precise points 
of neural and mechanistic overlap and 
divergence.

Consistent with predictions from work on 
model-based control during reinforcement 
learning and at least some overlap between 
frontoparietal brain systems involved in 
cognitive control and working memory with 
those involved in model-based emotion 
regulation23,24,61–63, individual differences in 
reappraisal ability have been related to indi-
viduals’ working memory capacity22,56,64. A 
recent study showed that enhancing dlPFC 
excitability through the use of transcranial 
direct-current stimulation improved par-
ticipants’ ability to both downregulate and 
upregulate negative emotions using reap-
praisal, as assessed by self-report and physi-
ological measures65. In another study, the 
effect of experimentally induced stress was 
tested on participants’ ability to use reap-
praisal to decrease physiological responses to 
a fear-conditioned CS66. Stress, which impairs 
working memory and dlPFC function67–69, 
disrupted the ability of reappraisal to reduce 

Figure 3 | Schematic of model-based and model-free emotion regulation. a | We propose that 
model-free emotion regulation involves the primary action of the ventral anterior cingulate (vACC)–
ventromedial prefrontal cortex (vmPFC) in encoding the experience-dependent value of regulatory 
actions, which modulate activity in emotional-reactivity regions (for example, the amygdala, insula, 
dorsal ACC (dACC) and periaqueductal grey (PAG)). b | By contrast, we propose that model-based 
emotion regulation involves the primary action of the frontoparietal and dorsal midline (supplementary 
motor area (SMA) and pre-SMA) cortices, which are used in the implementation of an internal model 
to compute the value of emotion-regulatory actions and guide behaviour. The arrow between model-
free and model-based systems indicates that the systems are likely to communicate which each other 
CPF�VJCV�DQVJ�V[RGU�QH�TGIWNCVKQP�OC[�QEEWT�VQ�FKHHGTKPI�FGITGGU�CV�VJG�UCOG�VKOG��FN2(%�|FQTUQNCVGTCN�
2(%��XN2(%�|XGPVTQNCVGTCN�2(%�

PERSPECT IVES

696 | NOVEMBER 2015 | VOLUME 16 www.nature.com/reviews/neuro



Nature Reviews | Neuroscience

Anger

Regulate?

Regulate?

Strategy?

Anger level reduced 
but not to target level

No anger

Yes No

4
2

MF MB

2 4

MF

Yes No

6

2

autonomic responses to the CS. Although 
relatively few imaging studies have examined 
forms of model-based regulation other than 
reappraisal, studies of both distraction and 
expressive suppression (that is, prevention 
of emotional expressions) found that both 
strategies engage dlPFC, vlPFC and dACC 
circuitry56,70,71. Ultimately, the precise overlap 
and differences in circuits used for cogni-
tive control and different types of model-
based emotion regulation may benefit from 
sophisticated multi-voxel pattern-analysis 
methods to clarify neural subcomponents72 
or methods such as representational similar-
ity analyses (which incorporate computational 
modelling)73. Regardless, conceptual and com-
putational approaches from reinforcement 
learning can still be applied to understand 
emotion regulation.

Recent work has also found that, 
although greater vACC–vmPFC activity 
encodes positive subjective value of emo-
tional pictures when participants are asked 
to experience the emotion without regulat-
ing, this is not the case when participants 
engage in reappraisal74. Another study 
examined the effect of a cognitive regula-
tion strategy aimed at up- or downregulat-
ing food cravings on value coding of these 
stimuli50. They found positive subjective 
value signals in both the vACC–vmPFC and 
dlPFC when participants experienced food 
stimuli. During downregulation, activity 
increased in the dlPFC but not the vmPFC, 
whereas during upregulation, activation 
increased in the vmPFC but not the dlPFC. 
This is consistent with non-human primate 
work that found coding of positive and 
negative value by dlPFC neurons during 
reinforcement learning49. Reappraisal of 
fear-conditioned stimuli also diminishes 
autonomic reactivity to the CS and recruits 
both dlPFC and vACC–vmPFC activity75.

Computational implementation
The classic model for reinforcement learning 
is that described by Rescorla and Wagner76. 
In its simplest form, the model can be 
described as follows:

Vt = Vt–1 + αδ   (1)
In this equation, V reflects the decision 

value, t is trial or time point, δ is the predic-
tion error and α is the learning rate. A higher 
learning rate would indicate a greater impact 
of the prediction error on value updating. 
The Rescorla–Wagner model and its adap-
tations rely on signed prediction errors, 
whereas other related formulations rely on 
unsigned prediction errors. The Pearce–Hall 
model77 exemplifies the latter case, replacing 
the Rescorla–Wagner learning rate with two 

variables: associability (the absolute value of 
the prediction error) and the salience of one 
or multiple stimuli. These models can also 
be effectively combined78,79.

With respect to emotion regulation, we 
propose that the decision to pursue emo-
tion regulation (or to do nothing and let the 
emotional reaction play out), as well as the 
choice among different regulatory strategies, 
involves a comparison of the predicted value 
of each action, accounting also for the cost 
(C) of each action (for example, see FIG. 4), 
and can be written as follows:

V(n)t = V(n)t–1 + αδ – C(n)  (2)
Hence, a general formulation of the 

decisional value of the nth potential emo-
tion-regulatory action (V(n)t) would reflect 
the predicted emotional state on trial or 
time point t. This value would be calculated 
by updating the prior value of this action 
(V(n)t–1) based on the prediction error (δn), 
multiplied by a learning rate (α). The pre-
diction error is the discrepancy between 
the measured emotional reactions minus 
the predicted emotional state (in multi-
componential space). The learning rate thus 
determines the relative importance of the 
emotional reactivity discrepancy on regula-
tion. Given that many emotion-regulatory 
actions may be possible, we propose that 
selecting a particular emotion-regulatory 
action at time point t–1 would lead to its 
value being updated by the prediction error 
for time t. The value of alternative unselected 
strategies may either not be updated or be 
decreased based on the magnitude of the 
prediction error. Finally, the value of each 
emotion-regulatory action must also take 
into consideration its specific implementation 
cost, C(n).

Evidence already exists for the impact 
of emotion or regulation on computational 
parameters during reinforcement learning. 
Exposure to fearful faces before a predic-
tive cue in a reward-based reinforcement-
learning task leads to faster acquisition of 
the rule, a higher learning rate and increased 
amygdala–striatal connectivity80. Similarly, 
reappraisal and related model-based 
emotion-regulation strategies modulate 
prediction error and expected-value signals 
in the striatum81, as well as counterfactual 
prediction errors (that is, to non-experienced 
outcomes) in the insula82.

However, to adapt computational mod-
els derived from reinforcement learning to 
emotional regulation, it is also necessary to 
incorporate measures of an individual’s cog-
nitive, subjective, physiological and motoric 
responses to emotional stimuli. Although 
limited in scope, evidence suggests that this 

is indeed possible. In studies of the reversal of 
learned fear, reinforcement learning-related 
models were fit to skin-conductance data, 
finding that the skin-conductance signal cor-
relates independently with both value and 

Figure 4 | Example of emotion regulation as a 
decision-making process. Consider a situation 
in which a hot-tempered manager shouts at his 
employees. The employee’s initial reaction, borne 
out of evaluating this situation as ‘bad for me’, is 
to react with anger. However, as this response 
would be detrimental to their job security, the 
emotional reaction is also valued as ‘bad for me’, 
and hence is targeted for potential regulation. 
The decision to engage in regulation involves a 
comparison of the value (accounting for cost) of 
regulating versus that of not regulating, here 
favouring regulation (four arbitrary units versus 
two). We argue that, in many instances, model-
free (MF) regulation will be the default strategy 
used, which in this case reduces the emotional 
reaction. Partial success, at least in this example, 
with MF regulation increases the value of the 
regulatory action (six arbitrary units versus two). 
However, the fact that the emotional reaction was 
not sufficiently eliminated then leads to another 
decision. In this example, comparison of the value 
(and cost) of model-based (MB) versus MF regula-
tion (four arbitrary units versus two) favours selec-
tion of a MB regulation strategy, which finally 
achieves the original goal of regulation.
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associability28,79. Moreover, prediction error 
signals were found in the dACC, striatum, 
insula and thalamus28, consistent with our 
formulation above. Activity in the amygdala 
was found to correlate with associability79. 
Within the realm of cognitive phenomena 
such as errors, conflict and contextual vari-
ability, two computational models closely 
related to reinforcement learning have been 
proposed to explain the function of the 
dACC (and presumably related structures)83. 
In these models, prediction errors are cal-
culated based on violations of expectations 
of accuracy and reaction times in a task. As 
these behavioural measures also reflect cog-
nitive components of emotional reactivity, 
they could be used when modelling emotion 
regulation. Finally, momentary self-reported 
positive emotion in response to outcomes 
during a reinforcement-learning task could 
be predicted by computationally derived 
parameters for expected value and predic-
tion error, rather than by simply winnings in 
the task84.

From a model implementation perspec-
tive, we propose that the prediction error 
term can be calculated in multi-componential 
space by contrasting the actual emotion on 
each trial (for example, through measur-
ing the skin-conductance responses, startle 
responses, reaction times and/or subjective 
ratings) with the predicted emotion. In this 
way, the predicted emotion would also be 

expressed in units similar to those for the 
multi-componential emotional response. 
We anticipate that optimal fitting of com-
putational models may also require inclu-
sion of different simultaneous recordings of 
emotional responses, such as heart rate, skin 
conductance and startle, that each reflect 
(potentially discordant) components of emo-
tional reactivity4,5. In fact, the discordance 
between these response channels may be 
one reason why learning effective emotion 
regulation is more difficult than acquiring 
stimulus–reward associations in typical rein-
forcement-learning tasks. This problem may 
be further accentuated in psychopathological 
states (BOX 1).

The process by which the brain selects 
between potential emotion-regulation 
strategies is also important to understand. 
Drawing on computational and neuroim-
aging work in reinforcement learning37, 
we propose that the emotion-regulatory 
strategy with the greatest value (account-
ing for cost) will be applied first (FIG. 4). In 
new situations in which no a priori internal 
model readily applies, this would mean a 
preference for model-free strategies, tran-
sitioning to model-based strategies if the 
initial attempts fail. However, in situations 
in which a well-informed internal model 
applies and would more-easily result in 
effective emotion regulation, individuals 
may begin with a model-based strategy 

rather than transitioning after a model-free 
strategy fails. A similar logic would apply 
to the choice between different forms of 
model-based regulation85,86. Recent findings 
in a sequential two-choice decision task 
probing both model-free and model-based 
control during reinforcement learning 
found that activity in the vlPFC and fron-
topolar cortex may reflect the arbitration 
between both types of strategies45. Negative 
connectivity between these regions and 
value-encoding regions emerged during 
transition between model-free and model-
based control, consistent with model-based 
control requiring inhibition of aspects of a 
default model-free control path. In a similar 
manner, the vlPFC was more-negatively 
coupled with the vmPFC when using a 
model-based cognitive strategy to down-
regulate food cravings — a condition under 
which the dlPFC coded value more strongly 
than did the vmPFC50.

Ultimately, it is unlikely that any indi-
vidual adopts an exclusively model-free or 
model-based form of emotion regulation. 
Rather, one type of strategy may predomi-
nate, and the relative weight of each strategy 
may be continually adjusted; alternatively, 
both strategies may proceed at the same 
time, with one predominating (FIG. 3). 
Although we draw heavily on insights from 
reinforcement learning, this also does not 
mean that learned changes in predictive val-
uation occur at the same timescale in emo-
tion regulation as in reinforcement learning. 
There is little doubt that effective emotion 
regulation is a learned process, but it may 
take a few attempts or even years of repeated 
attempts to achieve success. Patterns of brain 
activation during different emotion-regula-
tion paradigms may therefore reflect either 
short-term learning processes observed in 
real-time or the consequences of many years 
of practice.

Conclusions
We have proposed a unified conceptual 
framework for understanding emotion reg-
ulation by drawing on advances in a related 
area, namely reinforcement learning, and 
considering emotion regulation in terms of 
predictions, prediction errors and valua-
tion. Within this conceptual framework, it 
may now be possible to develop computa-
tional models for emotion regulation and to 
construct task conditions under which the 
interaction between model-free and model-
based regulation can be studied, as has been 
productively undertaken for reinforcement 
learning37. More broadly, our framework 
suggests that motivated behaviour involves 

Box 1 | Emotion regulation abnormalities in psychopathology

Studies examining emotion-regulation abnormalities in individuals with psychiatric conditions 
often consist of single reports for a particular regulation strategy or disorder, mostly with anxiety 
and depressive disorders. Nonetheless, these studies point to the clinical relevance of 
understanding the computational mechanisms underlying emotion regulation. As examples of 
impairments in model-free forms of emotion regulation, patients with either post-traumatic stress 
disorder or obsessive-compulsive disorder were impaired in their ability to express fear-extinction 
OGOQTKGU�CESWKTGF���|JQWTU�GCTNKGT87,88 and showed impaired activation of the ventral anterior 
cingulate (vACC)–ventromedial prefrontal cortex (vmPFC) during fear extinction. In a fear-general-
ization task, patients with general anxiety disorder (GAD) failed to activate the vACC–vmPFC in 
response to a conditioned stimulus unpaired with an unconditioned stimulus (that is, in response to 
a ‘safety signal’)30. Likewise, patients with GAD or depression failed to activate the vACC–vmPFC or 
deactivate the amygdala during emotional conflict regulation35,89.

Studies on model-based emotion regulation in psychiatric disorders have primarily focused 
on reappraisal. Findings in patients with depression have been inconsistent, with reports of 
patients showing a failure in dampening amygdala activity90,91 and hypoactivation of the 
dorsolateral PFC (dlPFC)92, but also showing hyperactivation of the dlPFC and related 
structures91–93, and showing no changes in activity94. Although limited, findings from studies in 
patients with anxiety disorders have been less variable, finding underactivation of the dlPFC 
and dorsomedial PFC95–99.

It is not yet clear which components of the computations underlying emotion regulation are 
most affected in any particular disorder or task (for example, prediction error signalling, value 
coding and updating, or strategy selection and implementation). Likewise, it is not clear whether 
emotion-regulatory impairments are primarily due to a failure to activate key regions or to 
abnormalities in the connectivity and coordination between regions. Nonetheless, the presence of 
abnormalities in conventional analyses of these paradigms encourages development of a 
computational modelling approach to emotion regulation.
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a common set of model-free and model-
based regulatory processes, whether it 
is considered from the perspective of 
reinforcement learning and value-based 
decision-making or from the perspective of 
emotion regulation.
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